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A new high-resolution code for the direct simulation of incompressible boundary layers
over a flat plate is described. It can accommodate a wide range of pressure gradients,
and general time-dependent boundary conditions such as incoming wakes or wall forcing.
The consistency orders of the advective and pressure-correction steps are different, but it is
shown that the overall resolution is controlled by the higher-order advection step. The for-
mulation of boundary conditions to ensure global mass conservation in the presence of
arbitrary forcing is carefully analyzed. Two validation boundary layers with and without
a strong adverse pressure gradient are presented, with maximum Reynolds numbers
Reh � 2000. They agree well with the available experiments. Turbulent inflow conditions
for the zero-pressure case are implemented by a recycling method, and it is shown that
at least the initial 300 momentum thicknesses have to be discarded before the effect of
the artificial inflow is forgotten. It is argued that this is not a defect of the method used
to generate the inflow, but a property of the boundary layer.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

This paper describes the design and performance of a new direct simulation code to compute turbulent and transitional
boundary layers. It is primarily intended to explore flow physics in relatively large simulations, and part of the design
requirements were that it should be useful in control applications including flows both with arbitrary free-stream perturba-
tions, and with time-dependent injection and suction at the wall. In contrast, the flow geometry is kept simple; a parallel-
epiped over a flat wall, and an upper boundary that is assumed to be far enough into the free stream to model flow at infinity.
Arbitrary pressure gradients are created by manipulating the transpiration velocities over that boundary. Both laminar and
turbulent inflow conditions are of interest, and the problems associated with the latter are discussed in some detail.

Although the fractional-step finite differences numerical scheme [1,2] with inflow and outflow boundary conditions is
relatively classical, the requirements just mentioned necessitate implementation adaptations which are not. For example,
efficiency suggests that the order of the advective and of the pressure-correction substeps should be chosen different,
and the requirements of arbitrary mass injection forces a careful rethink of how to implement global mass conservation.
Those adaptations, and their performance in test and application problems, are the main subject of the paper.

Turbulent boundary layers have been subjects of interest from the first days of fluid mechanics, both the canonical case
with zero pressure gradient (ZPG), and the more applied ones subject to adverse pressure gradients (APG). As a consequence,
they were some of the first flows to be simulated [3,4], but the Reynolds numbers of those simulations have increased more
slowly than for streamwise-homogeneous flows, such as pipes or channels [5,6]. Part of the reason is that they are harder to
. All rights reserved.
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compute because they are inhomogeneous in at least two directions, but perhaps equally important is that they require in-
flow boundary conditions. In transitional cases this is relatively straightforward, since the inflow is laminar, but even there
the question of how to seed the perturbations has to be considered. Transition in boundary layers is typically subcritical, and
its details depend on the level and character of the upstream perturbations. That is why experimental layers are usually
tripped, and why some equivalent mechanism is needed in simulations. If the problem of transition is to be completely
avoided, some way has to be devised to generate turbulent inflow conditions. This nontrivial problem has been the subject
of a lot of work, and influences the choices made for the rest of the code.

Although the boundary layer is a spatially developing flow, attempts have often been made to reintroduce periodicity in
the numerical problem, in some cases to retain spectral methods, and in others to use the outflow as a convenient source of
realistic fluctuations to synthesize a turbulent inflow. The strategies that use spectral methods further subdivide into those
in which the flow is expanded in terms of a slow growth plus periodic small-scale fluctuations [3,7], and those in which the
outflow is damped to minimize the spectral errors due to edge discontinuities, and reintroduced at the inflow after some
manipulation [4]. Although the latter ‘fringe’ methods are accurate [8], and have been used to simulate boundary layers
at relatively high-Reynolds numbers [9–11], one of the effects of the damping is that the incoming flow is typically almost
laminar, and that increasing the Reynolds numbers becomes increasingly expensive. A further problem is that periodicity is
difficult to reconcile with strong spatial inhomogeneity, such as strong pressure gradients, or with control strategies involv-
ing net mass injection.

Once spectral accuracy is abandoned, the choice of inflow strategies becomes wider, and reduces to determining how a
synthetic turbulent inflow can be made to converge fastest to a more realistic structure. A recent survey is [12], which,
although primarily concerned with large-eddy simulations and therefore with low-order statistics, shows that it is difficult
to create inflows with accommodation lengths shorter than several boundary layer thicknesses. In this paper we use the ver-
sion of the fringe method introduced in [13], in which an intermediate flow plane is rescaled and copied to the inflow with-
out damping. Our primary interest is to determine the length that has to be discarded before the flow can be assumed to have
forgotten the artificial inflow, and our assumption will be that the goal is to clarify the flow physics, about which nothing is
known a-priori.

If the simulation is non-periodic, spectral methods lose much of their attraction, and primitive-variable finite difference
fractional-step methods suggest themselves [14–16]. The fractional-step method was introduced in [17], and was first used
for turbulent flow simulations in [1]. Although, it is still an area of investigation and of some controversy [18], most of the
important problems surrounding it [1], can now been considered solved [19,2,20,21], and obtaining at least second-order
accuracy for the velocity components is straightforward.

Second-order central finite difference schemes have been applied [14–16]. They conserve momentum, energy and mass,
which makes them highly suitable for large-eddy simulations, but their relative poor resolution properties makes them less
attractive for high-Reynolds numbers direct simulations. Rather than obtaining very high accuracy, the problem is how to
improve the resolution to reduce the size of the necessary grids, and optimize memory use. This usually also reduces com-
putational time.

An obvious choice to improve resolution is to use compact finite difference schemes, especially fourth-order ones that
retain narrow stencils in collocated [22] and staggered grids [23]. Those schemes do not conserve energy in the inviscid limit,
but this is of minor importance in direct simulations in which the resolution should in any case be chosen so that viscosity is
the primary dissipation mechanism. Examples of the use of compact finite differences in DNS are [24,25], who do not use a
fractional-step formulation. When using fractional steps, it turns out that the pressure projection scheme cannot be effi-
ciently implemented with compact differences, and that the best choice is to mix a lower-order formulation for the pressure
with a higher-order one for the velocities. Whether this maintains the required resolution will be one of the subjects of our
analysis.

The structure of this paper is as follows. The basic code is described in Section 2, followed in Section 2.1 by the analysis of
the effect of the low-order pressure scheme. The question of global mass conservation is addressed in Section 3 for the gen-
eral case, and for our particular formulation. Two validation boundary layers with ZPG and APG, at relatively high-Reynolds
numbers, are described in Section 4. The ZPG case has a turbulent inflow, and especial attention is given to the effect of the
inflow procedure. A preliminary report of some of the material presented here, as well as further implementation details and
examples of code use, can be found in [26].
2. Problem formulation

The problem to be solved in a parallelepiped is the primitive-variable formulation of the incompressible Navier–Stokes
equations,
r �~u ¼ 0; ð1Þ

ot~uþr �~u~u ¼ �rpþ 1
Re
r2~u: ð2Þ
The velocity components of~u in the streamwise, x, wall-normal, y, and spanwise, z, directions are u;v and w. The pressure p
includes the constant fluid density. The boundary conditions at the inlet and at the top and bottom x–z planes depend on the
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flow being simulated, but the domain is always periodic in the z direction. The velocities at the outflow are estimated by a
convective boundary condition,
Fig. 1.
stagger
ot~uþ Ucox~u ¼ 0; ð3Þ
where Uc is usually the free-stream velocity at the exit, with a small correction to enforce global mass conservation that is
discussed in Section 3.

The fractional-step method described in [2,19] is used to enforce continuity and to efficiently solve for the pressure. The
basic idea is to write Eqs. (1) and (2) in semi-discrete form, and to factorize the resulting matrix system using an LU-decom-
position [2]. For a three-step Runge–Kutta time integration this results in
ðDt�1I � blLÞ~ul
� ¼ Dt�1~ul�1 � dlGpl�1 � clN~u

l�1 � flN~u
l�2 þ alL~ul�1 þ b:c:0s; ð4Þ

DtdlDGDpl ¼ D~ul
� þ b:c:0s; ð5Þ

~ul ¼ ~ul
� � DtdlGDpl; ð6Þ

pl ¼ pl�1 þ Dpl; ð7Þ
where l ¼ 1 � � �3 is the sub-step number, l� 2 is ignored for l ¼ 1 and ~u0 and ~u3 are the velocities at time steps n and nþ 1.
The coefficients for the Runge–Kutta are those in [21,27]. The nonlinear terms, and in general all the terms that are treated
explicitly in time, are included in the operator N. The linear implicit operator L includes only the viscous terms in the y-direc-
tion. It was shown in [27] that this treatment of the viscous terms does not lead to excessively small time steps in pipes, and
the same has been found by us in boundary layers. The divergence and the gradient are D and G. It was shown in [21,27] that
this Runge–Kutta is second-order accurate for the velocity, with the third-order errors being mostly viscous terms. This was
checked independently for our code in the model problems described below. The main advantage of the scheme (4)–(6) is to
allow the longer time steps associated with its good representation of the nonlinear advective terms.

The original paper [19] used the pressure-increment decomposition applied here, but they did not analyze the accuracy of
Eq. (7). It can be shown that the error of the pressure updated in this way is OðDtÞ, but does not influence the velocities. Other
choices of the coefficients of Dp in Eq. (7) results in pressure errors that vary in magnitude, but which do not change the
order. The coefficients used here are those for which the pressure error does not propagate from one time step to the next.
In any case, accurate pressures for the purpose of compiling statistics can be recovered from the velocity fields by solving the
full Poisson’s equation.

The convective and viscous terms in the x and y-directions are calculated using staggered three-point compact finite dif-
ferences. The coefficients for uniform grids are given in [23]. Those for nonuniform grids are obtained numerically using Tay-
lor expansions to enforce the highest possible consistency order. Fig. 1 defines how the variables are arranged in the x–y
planes. The velocity components and the pressure are expanded in Fourier series along z. No staggering is used in that direc-
tion, and the computation of the nonlinear terms is pseudo-spectral, using the 2=3 rule to prevent aliasing [28].

The time-step Dt is determined, using a constant CFL, from
Dt ¼ CFL min
ReðDxÞ2

6
;
ReðDzÞ2

p2 ;
Dxffiffiffi
3
p
juj
;

Dyffiffiffi
3
p
jvj

;
Dz

pjwj

 !
: ð8Þ
Although the time stepper is stable up to CFL � 1:7, most of the simulations described below are run with CFL � 0:5� 1, to
preserve time accuracy.

2.1. Lower-order schemes for the Poisson matrix

The Poisson operator in (5) has the form DG. We considered various discretizations for the divergence and gradient oper-
ators in Eqs. (4)–(7). The obvious one is to use the same compact difference schemes as for the convective and viscous terms.
The staggered grid configuration used in the code. Only the u; v velocities are staggered in the x—y plane. The velocities and the pressure are not
ed in z, so that w and p are collocated. Ghost points are used to impose boundary conditions.
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The divergence and the gradient would then be calculated from ADðD~uÞ ¼ BD~u and AGðGpÞ ¼ BGp, where AG;AD;BD;BG contain
the finite difference operators, and the discretized Poisson equation would be
A�1
D BDA�1

G BG p ¼ A�1
D BD~u ! BDA�1

G BG p ¼ BD~u: ð9Þ
Unfortunately, the matrix BDA�1
G BG is full, and discretizing DG in this manner is impractical.

From the various ways of achieving a sparser A�1
G , it was eventually decided to use a standard finite difference centred

second-order scheme [1]. Although this makes the code formally second-order accurate, it will be shown below that the ef-
fect on the resolution is not severe. Reducing the formal order of the code has the added advantage of allowing the use of a
fast Fourier scheme to solve the Poisson problem. The two sides of Eq. (5) are expanded in cosines along x, and the problem
reduces to a series of one-dimensional Helmholtz problems along y, with a modified wavenumber for each cosine represent-
ing the finite differences in x [29]. The Gibb’s errors due to the implicit derivative discontinuities at the non-periodic end
points are of order Dx2, except at the end points, and do not degrade the consistency. Higher-order schemes in non-periodic
domains cannot be treated in this way, because they require boundary schemes with different modified wavenumbers than
the interior operator.

The use of cosines also requires uniform grids along x, which are used in all the tests described below. A two-dimensional
multigrid solver was implemented for use with nonuniform grids in both x and y, but it turned out to be several times slower
than the direct method, and it was always found that the extra cost overwhelmed any savings obtained from nonuniform x
grids.

The influence of these low-order schemes on the resolution properties of the overall solution can be analyzed for triply-
periodic boundary conditions, assuming in addition that D ¼ GT [30]. The velocities can then be expressed as Fourier
expansions,
~uð~xÞ ¼
X

ûð~kÞ expði~k �~xÞ; where ~k ¼ ðkx; ky; kzÞ; ð10Þ
and both the divergence and the gradient reduce to cD~u ¼ i~k � û, and cGp ¼ i~kp, where ~k is either the exact or the modified
wavevector.

The pressure correction is a projection on the solenoidal plane ~k � û ¼ 0, given by
û ¼ û� �~að~a � û�Þ; ð11Þ
where~a ¼~k=jkj is the unit vector in the direction of~k, where jkj is the Cartesian norm. Assume that~a and~b are unit vectors
along the true and modified numerical wavevectors, respectively. The velocity error due the pressure step is
û� ¼~bð~b � û�Þ �~að~a � û�Þ; ð12Þ
which can be written in matrix form as
û� ¼ Eû�; where Eij ¼ bibj � aiaj; ð13Þ
and i and j vary over ðx; y; zÞ. Since E is symmetric, the magnitude of the error is bounded by its spectral radius,
jû�j 6 kEkjû�j; ð14Þ
which is easily found to be kEk ¼ j sin habj, where hab is the angle formed by the true and modified wavevectors. Note in par-
ticular that the error vanishes whenever both wavevectors are parallel, even if they have different magnitudes. For example,
that is the case for all the Fourier modes aligned with the coordinate axes, or for any of the diagonals in Fourier space. It is
because of all these null directions that the error of the projection step tends to be moderate. Moreover, this error does not
accumulate over time, but is a bound for the error in the velocity field due to the approximate representation of continuity.

Two examples are given in Fig. 2(a) for the two-dimensional case in ðkx; kyÞ. Because of the symmetries in the problem, the
error norm kEk can be computed for a single octant. The lower octant in the figure displays error isolines for a pressure step
based on centred second-order finite differences, given along each direction by
u0i ¼
uiþ1=2 � ui�1=2

Dx
; ð15Þ
whose modified wavenumber is
k�mod2 ¼ 2 sinðk�=2Þ; ð16Þ
where k� ¼ kDx. The upper octant displays error isolines for a projection step based on the fourth-order compact derivative
u0i�1 þ 22u0i þ u0iþ1 ¼
24ðuiþi=2 � ui�1=2Þ

Dx
; k�mod4 ¼

24 sinðk�=2Þ
11þ cosðk�Þ : ð17Þ
Although the fourth-order errors are smaller than those of (16), specially in the consistency limit, jk�=pj � 1, both errors re-
main small throughout the range of numerical wavenumbers. The largest error norm is kEk � 0:15 for Eq. (16), and
kEk � 0:11 for Eq. (17).



Fig. 2. (a) Resolution characteristics of the Poisson projection step based on the second-order derivative in Eq. (16) (lower octant), and on the fourth-order
derivatives compact finite differences in Eq. (17) (upper octant). The isolines are kEk ¼ 0:001 ð�2Þ0:128. (b) Maximum error bound for the same two
Poissons, and for the fourth-order compact finite difference advective derivative, as a function of the magnitude of the wavenumber. 3, second-order
Poisson in Eq. (16); --- -, fourth-order advection in Eq. (20); –�–, fourth-order Poisson in Eq. (17); � � � � � � , advective error of centred second-order finite
differences.
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These small error magnitudes suggest that a lower-order Poisson discretization is acceptable even when combined with
higher-order advective derivatives. Consider the schemes used for the latter in the present code, which uses compact fourth-
order formulas both for differentiation
1
22

f 0iþ3=2 þ f 0i�1=2

� �
þ f 0iþ1=2 ¼

12
11Dx

f I
iþ1 � f I

i

� �
; ð18Þ
and interpolation [23],
1
6

f I
iþ1 þ f I

i�1

� �
þ f I

i ¼
2
3

fiþ1=2 þ fi�1=2
� �

: ð19Þ
The resulting combined dispersion relation is
k�adv ¼
96 sinðk�Þ

67þ 28 cosðk�Þ þ cosð2k�Þ
¼ k� þ Oðk�5Þ: ð20Þ
Restricting ourselves to the one-dimensional case of an operator of the form Uox, the error norm after an integration time T
becomes kETk ¼ ðUkTÞjkadv=k� 1j, where the coefficient is the number of eddy turnovers. Fig. 2(b) compares the error mag-
nitudes for the two Poisson steps based on the derivatives in Eqs. (16) and (17), with the advective error during one turnover
due to Eq. (20). Even if the second-order error of the Poisson step dominates for the longest wavelengths, the resolution limit,
jk�=pj ¼ Oð1Þ, is controlled by the fourth-order advection, whose error grows faster with the wavenumber. The fourth-order
Poisson approximation is more accurate, but its extra accuracy does not improve the error of the overall simulation, which is
dominated by the advection at all wavenumbers. We have included in the figure the advective errors that would result from
using standard second-order centred finite differences for the advective term. As expected, they are high everywhere, and
degrade both the resolution and the consistency limits. For example, the resolution limit for the present scheme, which com-
bines fourth-order advection and second-order Poisson projection, is jk�=pj � 0:3 for kEk ¼ 10�2. It would fall to jk�=pj � 0:07
with second-order advection, more than quadrupling the required number of points. Note that this analysis is conservative
towards the side of the advection, because we have neglected the number of turnovers, which is typically large. An example
is given next in which the error is dominated by the fourth-order advection scheme over most of the resolution range.

2.2. Taylor–Green vortex

To test if the resolution predicted in Fig. 2(b) is obtained by our code, the decay of two-dimensional Taylor–Green viscous
vortices is simulated and compared with the analytical solution
uðx; y; tÞ ¼ � cosðkxÞ sinðkyÞ expð�2k2t=ReÞ;
vðx; y; tÞ ¼ sinðkxÞ cosðkyÞ expð�2k2t=ReÞ;

pðx; y; tÞ ¼ � 1
4k
ðcosð2kxÞ þ cosð2kyÞÞ expð�4k2t=ReÞ;

ð21Þ
for wavenumbers in the range k ¼ 3� 19. The Reynolds number is Re ¼ 1000, and all simulations are run for T ¼ 10p=k2,
corresponding to about 10p=k turnovers. The decay of the velocities during this time is about 0.94, independently of the



Fig. 3. Solid symbols are the relative L2 errors for the pressure, kpnum � pk=kpnumk, and the open ones are the errors per turnover for the velocity
kunum � uk=kunumkkT. �: k ¼ 3; �: k ¼ 5; 5: k ¼ 7; }: k ¼ 11; +: k ¼ 15; *: k ¼ 19. The two dashed lines are second- and fourth-order convergence
respectively.
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wavenumber. Tests are run with a small CFL ¼ 0:1, to isolate the errors due to the spatial discretization on a square domain
of size Lx � Ly ¼ p� p. The grid has N uniformly distributed points along x and y. Initial and Dirichlet boundary conditions
are imposed on u and v, but no conditions are required for the pressure.

The relative L2 errors are computed at the end of each run, and are given in Fig. 3. Following the argument in Section 2.1,
the velocity errors are scaled with the number kT of turnovers, while those of the pressure are not. Both errors collapse well
in this normalization, and the velocity errors display the predicted change from second- to fourth-order accuracy around
k ¼ 0:05p. Even if the advective terms cancel identically in the analytic solution to this particular problem, the numerical
error for the velocities is dominated by them over most of the resolution range.

3. Pressure, mass conservation and boundary conditions

As explained in [2,19], the solution of Poisson’s equation (5) for the pressure does not require boundary conditions if
velocity conditions have been previously imposed. Conceptually, this is equivalent to using homogeneous Neumann condi-
tions for the pressure, since otherwise the correction step in Eq. (6) would change the imposed normal velocities at the
boundary. The problems created by the tangential pressure gradients, which do change the tangential boundary velocities,
were discussed in [1], and are minimized here by using pressure increments.

However, there are occasions in which the velocity boundary conditions are poorly known, and they typically require
adjustment before the equations can be solved [9,15]. The most common case is the outflow boundary, where velocities
are typically ‘guessed’ from a heuristic advection formula such as Eq. (3), and which can generate substantial pressure pulses
whenever large eddies exit the domain.

The root of the problem is that Poisson’s equation with Neumann boundary conditions is singular, being invariant to an
additive constant pressure. This also implies that its right-hand side has to satisfy a compatibility condition which is equiv-
alent to global mass conservation.

The Poisson problem is
r2ðDpÞ ¼ r �~u� ð22Þ
in the continuous case, and Gauss’ integration over the domain X leads to
Z
X
r2ðDpÞdX ¼

Z
oX

onðDpÞdoX ¼ 0 ¼
Z

X
r �~u�dX ¼

Z
oX

~un doX: ð23Þ
The last term in this chain of equations is a statement on the boundary velocities, but the next one to its left is a condition on
the divergence itself, which is supposed to have been derived from the nonlinear advection step. In fact, adjusting the
boundary velocities introduces a discontinuity in ~u�, and a delta function in the divergence that enforces the condition that
it should have zero mean.

The discrete equivalent of Eq. (22) has the form,
DGDpnþ1 ¼ D~u�; ð24Þ
whose compatibility condition is
wT DGDpnþ1 ¼ wT D~u� ¼ 0; ð25Þ
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where the T superscript denotes transposition, and w is the left null eigenvector of DG. The two equations in (25) correspond
to the first and last term in (23), and multiplication by wT is the numerical equivalent of integration over dX.

Assume for example that we enforce mass conservation by adding to the streamwise velocity u� a constant correction up,
which is zero everywhere except at the outflow boundary. Define 1e as the vector whose components are one over the points
in which the correction is nonzero, and zero elsewhere, so that the new velocity is u� þ up1e. Introducing this velocity in Eq.
(25), we obtain
up ¼ �
wT D~u�
wT D1e

; ð26Þ
which provides the magnitude of the required correction. Note that the denominator in this equation is a number that only
needs to be computed once for each simulation. Non-constant corrections, or corrections over other boundaries, can be triv-
ially accommodated.

In general, Eq. (26) can only be applied after the advection step in Eq. (4), because the denominator is not known before-
hand, but the problem simplifies for the second-order pressure discretization used here. In most cases, the null vector w is
nonzero only near the boundary, but, in the particular case of the staggered second-order scheme, it can be shown that the
inner product in the numerator of Eq. (26) is the numerical flux,
X

i

u�n;iDi; ð27Þ
where u�n is the outwards normal velocity component, D is the width of the grid cell centred on the normal velocities, and the
summation extends only over known boundary values. For example, the contribution to Eq. (27) from the outflow boundary
is uNx ;jhj, where hj ¼ yjþ1 � yj and the yj are located at the positions of v j in Fig. 1. The correction up then satisfies
up

X
j

hj ¼ �
X

i

u�n;iDi; ð28Þ
which only involves boundary values, and can therefore be applied before the advective step. For more complicated schemes,
the numerical equivalent of oX has to be obtained numerically from ðDGÞTw ¼ 0, and its support generally extends to points
away from the boundary. In those cases, the correction can only be applied after~u� has been computed, which itself includes
the boundary conditions. Either an iterative procedure should then be used, or OðDpÞ errors are introduced in the final nor-
mal velocities.

It is important to realize that in those cases in which the pressure is known at the boundary, instead of the velocities,
Dirichlet boundary conditions can be applied to the Poisson pressure equation. The problem is then no longer singular,
but the normal pressure gradient is no longer zero at the boundary, and the correction step changes the normal velocities.
Global mass conservation is then automatically ensured. Such boundary conditions can be imposed within the framework of
the fractional-step method described in Section 2 and in [2,19], but they have not been implemented in our code.
4. Code validation

In this section the code is applied to two problems whose results are of independent interest. Both will be discussed in
future papers from the point of view of flow physics, and in the context of previous simulations and experiments. Here we
only concern ourselves with the numerical issues that they raise.

4.1. A turbulent boundary layer with zero pressure gradient

As mentioned in the introduction, turbulent boundary layers have long been subjects of interest, particularly the canon-
ical case with ZPG. This is therefore the subject of our first verification problem, with the goal of maximizing the Reynolds
number that can be achieved for a given computational cost. This leads us to avoid transition, and to use a turbulent inflow
generator. As already discussed in the introduction, the method chosen is the recycling scheme introduced by Lund in [13].

Both in that reference, where it was applied to drive an large-eddy simulations, and in some later direct simulations [31],
the method is typically applied by running a smaller spatially-periodic simulation from which the inflow plane is extracted
to the main inflow. If both the auxiliary and the main simulations belong to the same flow, we find little reason to separate
them, and here we use a downstream plane of the main simulation, xref , as a reference from which to synthesize the inflow.

Lund’s method is known to be delicate to apply [31,32], and Section 4.2 will be devoted to our experience with it. Before
that, we summarize the results of the two sets simulations performed. Their parameters are given in Table 1. The ‘short’ sim-
ulation SB is actually representative of a family of tests used to tune the numerical scheme, whose numerical parameters,
such as box height and grid resolution, were varied by factors of up to two from the nominal ones given in the table. Typical
grids for these cases are in the range of 100 Mpoints.

The full simulation LB was intended as a production run. It is one of the highest-Reynolds-number boundary layer sim-
ulations presently available, but, as mentioned above, only its numerical issues are addresses here. The average streamwise
pressure gradient is controlled by applying a constant uniform suction at the upper boundary, which is otherwise stress-free.



Table 1
Parameters of the zero-pressure-gradient simulations. Nx , Ny and Nz are the grid sizes along the three axes, expressed for z in terms of collocation points, and
the D’s are the corresponding resolutions, given at their coarsest points. The values in the top line are representative of the several short-box test simulations
(SB), and those at the bottom belong to the production run (LB). The Kolmogorov length g is computed from the local energy dissipation. The coarsest resolution
along x and z in terms of g is found at the wall, where gþ � 1:5. The resolution given in the table for y is reached at y � d99=2, where gþ � 3. The reference
momentum thickness, h, is taken at the centre of the simulation box.

Reh ðLx; Ly; LzÞ=h Dxþ;Dyþ;Dzþ Dy=g Nx;Ny;Nz

600–950 210� 41� 43 6:7� 0:70� 4:6 1.2 1282� 258� 386
620–2140 535� 29� 88 6:1� 0:30� 4:1 1.4 6145� 360� 1536
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The transpiration velocity is estimated from the known experimental growth of the displacement thickness, d�, in that range
of Reynolds numbers. This keeps the acceleration coefficient to b ¼ d�Uþ1oxUþ1 � 2� 10�4, which is reasonably small, but the
gradient increases sharply to b � 5� 10�3 within the last 5% of the numerical domain. This corresponds to the last 1.5
boundary layer thicknesses, and is clearly due to the effect of the outflow, which uses no numerical sponge in this particular
case. That region is discarded from the results.

The intensity of the free-stream velocity fluctuations turns out to be controlled by the ratio between the height of the
computational box and the boundary layer thickness at the exit, d99e (see Fig. 4), and remains almost constant with x. The
free-stream velocity fluctuations for the LB run are about 2:5� 10�3U1, and the corresponding vorticity fluctuations are
about 2� 10�3U1=d99e. They are also roughly independent of x, rather than scaling with the local d99. That scaling and con-
stancy suggest that the residual freestream fluctuations consist mostly of large-scale vorticity waves advected by the free
stream, and introduced at the inflow by the sloshing created by the interaction of the boundary layer with the exit. Such
fluctuations are unavoidable. The streamwise derivatives oxv and oxw cannot be imposed at the inflow boundary, and there
is no way of enforcing the strict irrotationality of the inflow. The incoming vorticity is fixed by the global pressure fluctua-
tions, which are in turn created when the largest eddies leave the domain. The resulting vorticity fluctuations are weak, but
because they have sizes comparable to those of the large outgoing eddies, they are not damped by viscosity, and cross the
simulation domain essentially undisturbed.

Fig. 5(a) shows the development of the friction coefficients of the two simulations, given1 in the form Uþ1 ¼ ð2=Cf Þ1=2, as
functions of the Reynolds number, Reh ¼ U1h=m. They are compared with the simulations in [3], and with the experimental re-
sults in [33], which cover roughly the same Reynolds number range. The latter experiments are particularly interesting because
they were designed to test the effect of the tripping, which is probably comparable to the effect of the numerical inflow, at least
in the sense that both mechanisms introduce in the flow some approximation to turbulence that then has to evolve to equilib-
rium. All their measurements were repeated with three different tripping devices, which are plotted in Fig. 5 using different
symbols. The result was that the effect of the trip survives up to Reh � 1500, and only becomes small beyond that limit. It is
seen in Fig. 5(a) that the same is true in our results, which initially diverge widely from the experiments, but eventually settle
into excellent agreement with them at about the same location at which the experimental scatter begins to decrease.

Fig. 5(b) and (c) present mean and fluctuation streamwise velocities roughly at the centre of the computational domain of
LB, together with the closest available experimental Reynolds numbers. The agreement is excellent in both cases. An older
simulation at roughly similar Reynolds number is also included [3]. The minor discrepancies of its fluctuations with both the
present results and with the experiments cannot be attributed to the Reynolds number difference, and are probably due to
the mean-flow expansion used in [3] to approximate the flow.

4.2. The effect of the inflow

Most of the adjustments required by our code for this particular application were connected with the turbulent inflow
condition. This was not due to the incorrect performance of the recycling method itself, which was applied much as de-
scribed in the original publication [13]. For example, some authors have reported problems initializing simulations from ran-
dom data [31], and have proposed solutions. Our simulations were initialized from a filtered field from [3], and extended
gradually, and did not require any such modification.

The problem seems to arise from the dynamics of the flow itself, and is probably common to most methods of generating
synthetic inflows. It is clear from Fig. 5(a) that a substantial initial part of the box has to be discarded. The evolution of flow
properties that reside farther from the wall than the friction coefficient actually suggests that the problem affects the first
25% of the box (Fig. 6). This, together with the shorter segment contaminated by the outflow, means that about one third of
the box has to be discarded, and that the range of useful Reynolds numbers is reduced from the values in Table 1 to about
Reh = 1100–2050.

The reason for the long inflow length can be seen in Fig. 7(a), which displays the autocorrelation function
1 Wa
Cuuðx; x0Þ ¼ huðxÞuðx0Þi
ðhuðxÞ2ihuðx0Þ2iÞ1=2 ; ð29Þ
ll-scaled variables are defined in terms of the local friction velocity usðxÞ and of the molecular viscosity m, and denoted by a + superindex.



Fig. 4. Fluctuations of the streamwise velocity for three simulations with different box heights. Reh ¼ 930. –�–, SB, Ly=d99e ¼ 1:75;3, LB, Ly=d99e ¼ 2:4; ----,
SB, Ly=d99e ¼ 3:6.

Fig. 5. (a) Friction coefficient versus Reynolds number. Open symbols are experiments from [33], tripped by M, wire; 5, grit; �, pins; d, simulations in [3].
3, LB simulation; ----, representative SB simulation. (b) Mean streamwise velocity. 3, LB simulation at Reh ¼ 1350; ----, simulation in [3], Reh ¼ 1410.
Open symbols are as in (a), with Reh � 1350. –�–�–, logðyþÞ=0:41þ 5. (c) Root-mean-squared streamwise velocity. Symbols as in (b), but Reh � 1550, both for
[33] and for LB.

Fig. 6. Peak value of the three velocity-fluctuation intensities, normalized to a common level for the purpose of plotting. Simulation LB. 3, u0=us; - -- -,
v 0=us; –�–, w0=us . The dashed vertical lines are the limits of the ‘useful’ range.
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where the averaging h i is taken over time and spanwise location, and the streamwise velocity u has been filtered to include
only a certain band of spanwise Fourier coefficients. The correlation is given as a function of x, and, besides the primary peak
at x ¼ x0 � 1100h0, there is a secondary peak at x ¼ x0 � xref � 150h0. Lund’s method can be interpreted as a physical exper-



Fig. 7. (a) Correlation Cuuðx; x0Þ of the streamwise velocity in simulation LB, as a function of x. (b) Secondary peaks of Cuu , for various values of x0 .3, SB; -- --,
LB. For both simulations the correlation is only computed for a band of spanwise wavenumbers kz=d99;ref ¼ ð1:2—2:3Þ, at y=d99;ref � 0:4. The dashed vertical
line in (a) is the location of the inflow reference plane for LB. The one in (b) is for SB.
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iment in which eddies at the reference plane are approximately (except for rescaling) copied to a different position in the
boundary layer (the inflow), and evolved. The correlation between the reference and the inflow planes is always large, be-
cause one is almost a copy of the other. When the correlation is computed with respect to some location downstream of the
reference plane, it reflects, besides the local structure of the eddies, the correspondence between eddies that have been ad-
vected from the reference and from the inflow planes. This is the origin of the secondary peak in Fig. 7(a), and its decay with
x0 � xref is a measure of the Lagrangian decorrelation time of the eddies as they are advected by the mean velocity. Both the
range of spanwise wavenumbers in Fig. 7, and the y location of the correlations, have been chosen to maximize the ampli-
tude of the secondary peak, and it is interesting that they correspond to spanwise wavelengths of the order of kz=d99;ref � 1:5,
which is somewhat wider than, but of the same order as, the large-scale structures identified in this region of experimental
boundary layers [34].

The decay of the secondary peak as it moves away from the inflow is shown in Fig. 7(b), and is exceedingly slow. The
peaks from the short simulation, in which the reference plane is close to the inflow, have decayed very little by the time they
reach 